Kobayashi hyperbolic convex domains not biholomorphic to bounded convex domains

نویسندگان

چکیده

We construct families of convex domains that are biholomorphic to bounded domains, but not domains. This is accomplished by finding an obstruction related the Gromov hyperbolicity Kobayashi metric.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Domains with Convex Hyperbolic Radius

The hyperbolic radius of a domain on the Riemann sphere is equal to the reciprocal of the density of the hyperbolic metric. In the present paper, it is proved that the hyperbolic radius is a convex function if and only if the complement of the domain is a convex set.

متن کامل

Convex Defining Functions for Convex Domains

We give three proofs of the fact that a smoothly bounded, convex domain in R n has defining functions whose Hessians are non-negative definite in a neighborhood of the boundary of the domain.

متن کامل

Lineally convex Hartogs domains

We study lineally convex domains of a special type, viz. Hartogs domains, and prove that such sets can be characterized by local conditions if they are smoothly bounded.

متن کامل

Quasihyperbolic geodesics in convex domains

We show that quasihyperbolic geodesics exist in convex domains in reflexive Banach spaces and that quasihyperbolic geodesics are quasiconvex in the norm metric in convex domains in all normed spaces. 2000 Mathematics Subject Classification: 30C65

متن کامل

Hyperbolicity in Unbounded Convex Domains

We provide several equivalent characterizations of Kobayashi hyperbolicity in unbounded convex domains in terms of peak and anti-peak functions at infinity, affine lines, Bergman metric and iteration theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2021

ISSN: ['1432-1823', '0025-5874']

DOI: https://doi.org/10.1007/s00209-021-02858-9